skip to main content


Search for: All records

Creators/Authors contains: "Goffinet, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Applying molecular methods to fungi establishing lichenized associations with green algae or cyanobacteria has repeatedly revealed the existence of numerous phylogenetic taxa overlooked by classical taxonomic approaches. Here, we report taxonomical conclusions based on multiple species delimitation and validation analyses performed on an eight-locus dataset that includes world-wide representatives of the dolichorhizoid and scabrosoid clades in section Polydactylon of the genus Peltigera . Following the recommendations resulting from a consensus species delimitation approach and additional species validation analysis (BPP) performed in this study, we present a total of 25 species in the dolichorhizoid clade and nine in the scabrosoid clade, including respectively 18 and six species that are new to science and formally described. Additionally, one combination and three varieties (including two new to science) are proposed in the dolichorhizoid clade. The following 24 new species are described: P. appalachiensis , P. asiatica , P. borealis , P. borinquensis , P. chabanenkoae , P. clathrata , P. elixii , P. esslingeri , P. flabellae , P. gallowayi , P. hawaiiensis , P. holtanhartwigii , P. itatiaiae , P. hokkaidoensis , P. kukwae , P. massonii , P. mikado , P. nigriventris , P. orientalis , P. rangiferina , P. sipmanii , P. stanleyensis , P. vitikainenii and P. willdenowii ; the following new varieties are introduced: P. kukwae var. phyllidiata and P. truculenta var. austroscabrosa ; and the following new combination is introduced: P. hymenina var. dissecta . Each species from the dolichorhizoid and scabrosoid clades is morphologically and chemically described, illustrated, and characterised with ITS sequences. Identification keys are provided for the main biogeographic regions where species from the two clades occur. Morphological and chemical characters that are commonly used for species identification in the genus Peltigera cannot be applied to unambiguously recognise most molecularly circumscribed species, due to high variation of thalli formed by individuals within a fungal species, including the presence of distinct morphs in some cases, or low interspecific variation in others. The four commonly recognised morphospecies: P. dolichorhiza , P. neopolydactyla , P. pulverulenta and P. scabrosa in the dolichorhizoid and scabrosoid clades represent species complexes spread across multiple and often phylogenetically distantly related lineages. Geographic origin of specimens is often helpful for species recognition; however, ITS sequences are frequently required for a reliable identification. 
    more » « less
    Free, publicly-accessible full text available August 8, 2024
  2. Karyotypic diversity is critical to catalyzing change in the evolution of all plants. By resulting in meiotic incompatibility among sets of homologous chromosomes, polyploidy and aneuploidy may facilitate reproductive isolation and the potential for speciation. Across plants, karyotypic variants in the form of allopolyploids receive greater taxonomic attention relative to autopolyploids and aneuploids. In particular, the prevalence and significance of autopolyploidy and aneuploidy in bryophytes is little understood. Using Fritsch’s 1991 compendium of bryophyte karyotypes with augmentation from karyological studies published since, we have quantified the prevalence of karyotypic variants among ~1500 extant morphological species of mosses. We assessed the phylogenetic distribution of karyological data, the frequency of autopolyploidy and aneuploidy, and the methodological correlates with karyotypic diversity. At least two ploidy levels were recorded from 17% of species potentially increasing current taxonomic diversity of mosses to over 15,000 species. We find that for a given species, the number of unique karyotypes recorded is correlated with the number of populations sampled. The evidence suggests that cytological diversity likely underlies yet undescribed species diversity in mosses, and that intensive karyological sampling is a needed tool for its discovery. 
    more » « less
  3. Introduction. Half a century since the creation of the International Association of Bryologists, we carried out a review to identify outstanding challenges and future perspectives in bryology. Specifically, we have identified 50 fundamental questions that are critical in advancing the discipline. Methods. We have adapted a deep-rooted methodology of horizon scanning to identify key research foci. An initial pool of 258 questions was prepared by a multidisciplinary and international working group of 32 bryologists. A series of online surveys completed by a broader community of researchers in bryology, followed by quality-control steps implemented by the working group, were used to create a list of top-priority questions. This final list was restricted to 50 questions with a broad conceptual scope and answerable through realistic research approaches. Key results. The top list of 50 fundamental questions was organised into four general topics: Bryophyte Biodiversity and Biogeography; Bryophyte Ecology, Physiology and Reproductive Biology; Bryophyte Conservation and Management; and Bryophyte Evolution and Systematics. These topics included 9, 19, 14 and 8 questions, respectively. Conclusions. Although many of the research challenges identified are not newly conceived, our horizon-scanning exercise has established a significant foundation for future bryological research. We suggest analytical and conceptual strategies and novel developments for potential use in advancing the research agenda for bryology. 
    more » « less